6 F eb 2 00 4 MULTIPLE q - ZETA VALUES

نویسنده

  • DAVID M. BRADLEY
چکیده

We introduce a q-analog of the multiple harmonic series commonly referred to as multiple zeta values. The multiple q-zeta values satisfy a q-stuffle multiplication rule analogous to the stuffle multiplication rule arising from the series representation of ordinary multiple zeta values. Additionally, multiple q-zeta values can be viewed as special values of the multiple q-polylogarithm, which admits a multiple Jackson q-integral representation whose limiting case is the Drinfel’d simplex integral for the ordinary multiple polylogarithm when q = 1. The multiple Jackson q-integral representation for multiple q-zeta values leads to a second multiplication rule satisfied by them, referred to as a q-shuffle. Despite this, it appears that many numerical relations satisfied by ordinary multiple zeta values have no interesting q-extension. For example, a suitable q-analog of Broadhurst’s formula for ζ({3, 1}), if one exists, is likely to be rather complicated. Nevertheless, we show that a number of infinite classes of relations, including Hoffman’s partition identities, Ohno’s cyclic sum identities, Granville’s sum formula, Euler’s convolution formula, Ohno’s generalized duality relation, and the derivation relations of Ihara and Kaneko extend to multiple q-zeta values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 90 3 . 23 83 v 2 [ m at h . N T ] 1 3 M ar 2 00 9 WITTEN MULTIPLE ZETA VALUES ATTACHED TO sl ( 4 )

In this paper we shall prove that every Witten multiple zeta value of weight w > 3 attached to sl(4) at nonnegative integer arguments is a finite Q-linear combination of MZVs of weight w and depth three or less, except for the nine irregular cases where the Riemann zeta value ζ(w − 2) and the double zeta values of weight w − 1 and depth < 3 are also needed.

متن کامل

ar X iv : 0 90 3 . 23 83 v 1 [ m at h . N T ] 1 3 M ar 2 00 9 WITTEN MULTIPLE ZETA VALUES ATTACHED TO sl ( 4 )

In this paper we shall prove that every Witten multiple zeta value of weight w > 3 attached to sl(4) at nonnegative integer arguments is a finite Q-linear combination of MZVs of weight w and depth three or less, except for the nine irregular cases where the Riemann zeta value ζ(w − 2) and the double zeta values of weight w − 1 and depth < 3 are also needed.

متن کامل

ar X iv : m at h / 00 10 14 0 v 1 [ m at h . Q A ] 1 3 O ct 2 00 0 RELATIONS OF MULTIPLE ZETA VALUES AND THEIR ALGEBRAIC EXPRESSION

We establish a new class of relations among the multiple zeta values ζ(k1, . . . , kl) = ∑ n1>···>nl≥1 1 n k1 1 · · ·n kl k , which we call the cyclic sum identities. These identities have an elementary proof, and imply the “sum theorem” for multiple zeta values. They also have a succinct statement in terms of “cyclic derivations” as introduced by Rota, Sagan and Stein. In addition, we discuss ...

متن کامل

ar X iv : m at h / 04 02 15 2 v 2 [ m at h . Q A ] 1 4 Ja n 20 05 On relations for the q - multiple zeta values

We prove some relations for the q-multiple zeta values (qMZV). They are q-analogues of the cyclic sum formula, the Ohno relation and the Ohno-Zagier relation for the multiple zeta values (MZV). We discuss the problem to determine the dimension of the space spanned by qMZV's over Q, and present an application to MZV.

متن کامل

Math Honours: Multiple Zeta Values

[1] EZ-Face [2] Michael Hoffman’s site contains some basic information about the MZVs. Hoffman also has a comprehensive list of references on MZVs and related stuff [3] Jonathan M. Borwein, David M. Bradley, David J. Broadhurst, and Petr Lisonek, “Special values of multidimensional polylogarithms,” Trans. Amer. Math. Soc. 353 (2001), 907–941 [4] Wadim Zudilin, “Algebraic relations for multiple ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008